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In what proportions must be distributed the labor and the capital resources 
between the two sectors of economy -- the production of the means of production and the pro- 
duction of the objects of consumption-- in order to maximize the production of objects of 
consumption per capita of the population? In this article we describe a two-sector model of 
economy, within whose framework we give an answer to the above question (it is clear that 
the result has a purely model character and is not a recommendation for actual economy). The 
result is as follows: In the first place, from the exponential trajectories of development 
of the economy we select the "golden" trajectory on which the per capita consumption is 
greater than on other exponential trajectories. (This trajectory can be described with the 
help of "the golden rule" in economic terms without using the concrete form of the produc- 
tion functions,) Secondly we show that the average consumption on an arbitrary (not neces- 
sarily exponential) trajectory cannot exceed appreciably the consumption on the golden tra- 
jectory on an arbitrarily large interval of time. Thirdly, we show that from an arbitrary 
initial state we can asymptotically approximate to the golden trajectory. 

I. THE GOLDEN RULE. 

GEOMETRY OF EXPONENTIAL TRAJECTORIES 

We start with the formulation of the "golden rule" ([I]). For the optimal development 
of  economy a) the investments in the first sector are equal to the profit connected with the 
capital of the first sector, and the investments in the second sector are equal to the profit 
connected with the labor of the f~rst sector; b) the labor resources are divided between the 
first and the second sectors in proportion to the profit connected with the capital of the 
second sector and the profit connected with the labor of the second sector, 

In this section, we describe a two-sector model of economy with continuous time. We 
give geometrical description of the exponenLial trajectories of the model. It is shown that 
the maximum consumption is attained on the trajectory satisfying the golden rule, among the 
exponential trajectories. 

1.1. A Two-Sector Model of Economy 

Let us consider the two-sector model of economy 

R i  = l i  - p,K~, ( 1 ) 

g 2  = g - ~ g 2 ,  ( 2 )  

I~ + 12 <~ F~,(K~, L~), (3) 
L~ + L~ = e pt, ( 4 )  

C = F2(K~, Lr  ( 5 )  

Here Kl, Ll, K2, and L2 are the capital and the labor resources in the first and the second 
sectors, Il and I2 are the investments in the first and the second sectors, Fl and F2 are 
the production functions defining the output in each sector (these functions are assumed to 
be smooth and convex); ~ is the amortization coefficient, p is the rate of growth of the 
total labor resources, and C is the total consumption. Let c denote the per capita consump- 
tion (or, in short, simply consumption): c = C/L (namely, we will optimize this quantity). 
The inequality (3) means that the sum of investments does not exceed the production of the 
first sector (the trajectories, on which this inequality becomes an identical equality, will 
be said to be taut). The first two equations mean that the investments in each sector go to 
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increase capital, whereas the ~-th part of the capitals grows old and is taken out from pro- 
duction. The set of the nonnegative functionsKj, Lj, Ij, j = I, 2, that satisfy the system 

(I)-(5) is a trajectory of the model. 

For each sector of economy j = I, 2, it is convenient to introduce relative economic 
characteristics by dividing the characteristics of each sector by the number of persons en- 
gaged in it. Let kj denote the fund allocation in each sector (is equal to Kj/Lj)~ fj(ko) 
denote the productivity of labor [is equal to Fj(Kj, Lj)/Lj], and ij denote the reduced in- 
vestment (is equal to Ij/Lj). 

As is often accepted, we will assume that the productivity of labor fj in each sector is 
a strictly convex (i.e., fj < 0) monotonically increasing function. 

Proposition I. In the considered model there exists a two-parametric family of taut 
economic trajectories (i.e., trajectories in which all the functions are proportional to an 
exponent with power p and Ii + I2 = Fl). Such a trajectory is determined by each preassigned 
pair of nonnegative fund allocations (k ~ k~ where k ~ does not exceed the positive root of 
the equation fl(k) = (~ + p)k. The following relations are fulfilled on an exponential tra- 
jectory: 

"1 (~ + v) k~ ' 

= h (kD - + p)k  
L~ (~ + p) k~ ' 

Proposition I is verified by direct computation. The results of these computations have 
simple geometrical interpretation. 

1 . 2 .  Geometrical Description of Taut Exponential Trajectories 

Let us construct the graphs of the functions Yl = fl(kl) and yl = (~ + p)kl in a single 
diagram (Fig. la). 

The ratio 72/71 is equal to the ratio in which the straight line yl = (~ + p)kl divides 
the vertical segment joining the point k~ with the graph of the function fl. 

The dotted line, parallel to the straight line y~ = (p + p)kl, cuts off the segment OAf, 
equal to [fl(k~) -- (~ + p)k~]/(~ + p), on the axis of kl. 

Let us construct the graph of the function f2(k2) and cut off a segment OA2, equal to 
OAt, on the axis of k2 (see Fig. Ib). 

The ratio L2/LI is equal to the ratio of the segment OA2 to the segmenv Ok~. 

Finally, from the similarity of triangles, we conclude that the straight line, joining 
the point A2 with the point (k~, f2(k~) , cuts offa segment OB2 : o : fe(k~)[fl(k~) - (~ + 
p)k~]/(p + p)k~ on the axis of y2. 

The problem of maximizing consumptlon on taut exponential trajectories is reduced to the 
geometrical problem of finding the points k~ and k~ for which the segment OB2 is largest. 
For fixed segment OA2, the segment OB2 is largest if the dotted line in Fig. Ib touches the 
graph of the function Yz = f2(k2). This maximum increases with the increase of th~ segment 
OA2. The segment OA2 is largest if the dotted line in Fig. la touches the graph of the func- 
tion yl = fl(kl). Thus, for obtaining optimal k~ and k~ we must proceed in the following 
manner. We must draw the tangent to the graph of Yl = f1(kl) parallel to the straight line 
Yl = (P + p)kl. The abscissa of the point of contact is k~. Next, we must cut off on the 
axis of k2 a segment equal to the segment an the axis of.kl cut off by the tangent drawn 
by us. From the point so obtained, we must draw a tangent to the graph of y2 = f2(k2). The 
abscissa of the point of contact is k~ (see Figs. 2a and 2b). 

The following conditions are fulfilled for stationary values of k~ and k~: 
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[The second of  t h e s e  c o n d i t i o n s  means t h a t  t he  t a n g e n t s  to  the  g raphs  of  Yz = f~ (k )  and Y2 = 
f 2 ( k )  a t  the  p o i n t s  k m and k~, r e s p e c t i v e l y ,  i n t e r s e c t  on the  a x i s  o f  k .  Let  us o b s e r v e  t h a t  
t h i s  c o n d i t i o n  i s  f u l f i l l e d  a t  each  moment o f  t ime f o r  the  d i f f e r e n t i a l - o p t i m a l  t r a j e c t o r i e s  
of Sec. 2. ] 

Using these conditions and the computations of Proposition I, we easily see that the 
following relations are fulfilled for the optimal stationary values: 

! 

, (6) ! 

11 / 1  (kl) ~;i 

L~ 4 (k~) - j~ (k~) k~ (7) 

1.3. Economic Interpretation of the Golden Trajectory 

The relations (6) and (7) express the "golden rule," formulated at the beginning of this 
section. Let us explain it. By virtue of the homogeneity of the production functions Fj(Kj, 
Lj), the Euler identity 

OFj OFj 
aKj Kj -~ ~ L 5 = Fi 

i s  f u l f i l l e d .  The te rms  on the  l e f t - h a n d  s i d e  o f  e q u a l i t y  a r e  i n t e r p r e t e d  as t he  l i m i t i n g  
p r o f i t  f rom the  c a p i t a l  and the  l i m i t i n g  p r o f i t  f rom the  l a b o r  o f  the  j - t h  s e c t o r  [3Fj /3Kj  
i s  t he  p r o f i t  c a l c u l a t e d  pe r  u n i t  c a p i t a l  and ( 3 F j / 3 K j ) - K j  i s  the  p r o f i t  c o n n e c t e d  wi th  the  
c a p i t a l  o f  the  j - t h  s e c t o r ] .  We i n t e r p r e t  3F j /3Lj  and ( 3 F j / 3 L i ) L  j in  the  same manner .  The 

0Fj /0F i 
ratio 5-~jLj/~-Kj of these profits is equal to the quantity 

h (kj) - I~ (k~) kj 
I~ (k~) kj 

Remark. All the limiting profits 3Fj/3Kj and 3Fj/3Lj, occurring in the "golden rule," 
can be expressed in terms of "observable" economic quantities such as the rates of growth of 

! 
profits Fj/Fj in each sector, the fund capacities (i.e., the ratios Fj/Kj of funds to prof- 
its), etc. This has been done in [2] for the quantity 3FI / 3K1 and can be done for the re- 
maining quantities in the same manner. 

2. ASYMPTOTIC OPTIMALITY OF THE "GOLDEN TRAJECTORY" 

Let c* denote the consumption of the "golden trajectory" (see Sec. I). 

THEOREM I. For each trajectory x(t) = (Kl(t), Ll(t), K2(t), L2(t)) of the two-sector 
model of economy (I)-(5) and for arbitrarily large T and arbitrarily small E > 0 there exists 
a moment of time to, starting from which the average consumption during the period T does not 
exceed c* + ~, i.e., 

to+T 
t ~ Fu (K 2 (t), L 2 (t)) dt  

--5 j L (t) < c* § 8. 
t o 
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COROLLARY. The lower limit of the consumption does not exceed c* for any trajectory. 

We give a proof of Theorem I. We start from two simple lemmas. 

LEMMA I. Let Xs(t) be a trajectory of the model that depends on a parameter s and ~(s) 

be finite nonnegative density with integral one: I ~(s) ds=i . Then the vector-valued func- 

tion y(t)=~x~(t)~(s)ds is also a trajectory of the model~ 

Lemma I follows from the convexity of the differential inequalities I)-5), controlling 

the dynamics in the model. 

LEMMA 2. Let x(t) be a trajectory of the model. Then the vector-valued function y(t) = 

-!- i ~ x(~-T)e-P~dT is also a trajectory of the model. 
T J 

t 

-pT 
Indeed, the displaced trajectory x(t + ~), after multiplication by e , is again a 

trajectory of the model. Lemma 2 now follows from Lemma I. 

Since the function Ff(K~, Lf) is convex and homogeneous, the average consumption on the 
trajectory x(t) during the period from to to to + T is not greater than the consumption on 

the trajectory y(t) at the moment to. 

Thus, to prove the theorem it is sufficient for us to show that there does not exist 

any trajectory on which the consumption from a certain moment exceeds c* + s 

The further arguments are based on the analysis of the two-sector model of economy given 

in [3]. 

A trajectory of the two-sector model is said to be differential-optimal if the following 

identities are fulfilled on it: 

L + 12 = F~, 
OF.....AIOF_32 ~ OF.._~.OF....___2 
OK t OK~ OL 10L2" 

The first of these identities ensures that the whole production of the first sector goes 
to investments and the second identity ensures that on account of the instantaneous redis- 
tribution of the labor and the capital resources between the sectors the production cannot 

at once be increased in both the sectors [3]. 

LEMMA 3. If there exists a trajectory of the two-sector model with consumption c(t)~ 
then there also exists a differential-optimal trajectory with the same consumption. 

Proof. This lemma follows immediately from the theorem on the absolute optimality of 
the differential-optimal trajectories in the two-sector model (see [4]). 

LEMMA 4. There does not exist any differential-optimal trajectory with constant con- 

sumption greater than c* + E. 

Proof. The proof of this lemma is contained in [3, Sec. 5]. 

Lemmas I-4, taken together, give a proof of Theorem I. Indeed, it follows from the 
existence of a trajectory with consumption greater than c* + s that there exists a trajectory 
with consumption equal to c* + s, which, by virtue of Lemma 3, implies the existence of a 
differential-optimal trajectory with the same consumption. Lemma 4 shows that there is no 
such trajectory. 

Proposition. For an arbitrary initial state of economy (in which the initial capital of 
the first sector is not equal to zero) there exists a trajectory of the model outgoing for 
t § ~ onto the "golden trajectory" (in the following sense: the difference of the trajectory 
from the "golden trajectory," divided by L(t), approaches to zero as t + ~). 

Proof. As such a trajectory we can take the differential-optimal trajectory for which 
the labor and the capital resources are divided between the sectors in constans proportions 
(equal to the proportions of these quantities on the "golden trajectory"). The convergence 
(in the indicated sense) of similar trajectories to the exponential trajectories has been 
proved in [3, Sec. 3]. 
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BOUNDARY VALUES OF THE MAPPINGS OF THE SEMISPACE, CLOSE TO 

CONFORMAL ONES 

A. P. Kopylov UDC 517.54 

In the present paper we give sufficiently detailed proofs of statements equivalent to 
those announced in [I]. 

The successive development of the ideas generated by that approach in the investigation 
�9 ~ ~n+l § ~n+l of the boundary behavior of the mapplngs ::K+ ~ of the semispace B~ +I {z=(z:,x~ ..... 

n+l xn+1)~Rn+llxn+1>O) of the real arithmetic Euclidean space R , close to conformal ones, 
which has been undertaken in [I], has led the author to the concept of the stability of the 
classes of mappings [2] containing in a natural manner the basic ingredients of the theory 
of stability of the conformal mappings of plane domains and of domains in multidimensional 
real spaces and has allowed, starting from this concept, to construct the stability theory 
of classes of multidimensional holomorphic mappings [3, 4]. The results of [I], which we 
have called to the attention of reader, will be interpreted from the point of view of the 
theory of the nearness of mappings to a given class of mappings [2]. 

I. Traces on Hyperplanes 

Let n be a natural number, greater or equal to I, and let ~=~(n, n+ I) be the class 
~v:: of mappings from [2], i.e., the class of mappings of domains (open, connected sets) of 
the space R n into the space R n+1, representing the restrictions to the considered domains of 
conformal affine mappings of the space R n into R n+z. We note that the conformal affine map- 
pings are nondegenerate affine mappings preserving the angles between any two lines and coin- 
cide with the mappings f:R n § R n+l that are representable in the form /(t) =aP(t) +b, t~R n, 
where a is a nonzero real number, P:R n § R n+1 is a linear isometric mapping and b is a vector 
in the space R n+1. It is easy to verify that the class ~ satisfies the conditions gl--ga, 
! 

~4, gs, and ~ of [2]. 

In [2] one has considered a series of nearness functionals of mappings to a given class 
of mappings. At the basis of the investigations, the results of which are presented in this 
paper, we place the functional ~i from [2]. We recall the definition of this functional in 
connection with the case of the class ~. 

Let f:A + R n+l be a locally bounded mapping of the domain A of the space R n into the 

{ I n  I:/2} 
space R n+l and let B=B(x, r)~ t~Rnll t--x[ =[~(tj--xj)'J <r be a ball of the space R n, 

contained in A. We set 
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